高光谱成像仪高光谱图像数据几种处理方法
发布时间:2024-04-12
浏览次数:363
随着光学成像技术和探测器技术的不断发展,高精密的光学仪器高光谱成像仪被广泛的应用于不同的行业,它将传统光谱仪的二维成像与光谱技术有机的融为一体,可以完整、无损地同时获取被测物的空间信息和光谱信息。本文对高光谱成像仪高光谱图像数据的处理方法作了介绍。
随着光学成像技术和探测器技术的不断发展,高精密的光学仪器高光谱成像仪被广泛的应用于不同的行业,它将传统光谱仪的二维成像与光谱技术有机的融为一体,可以完整、无损地同时获取被测物的空间信息和光谱信息。本文对高光谱成像仪高光谱图像数据的处理方法作了介绍。
高光谱图像数据的一般处理流程如下图所示,基于高光谱图像图谱合一的特点,高光谱图像数据的分析方法可分为以下几个步骤:
1.样品制备与图像获取
首先,需要制备研究样品。制备过程中,不仅要考虑含量的影响还要考虑成分等其他因素对图像获取的影响。样品制备完成后,进行图像的获取。将样品放在载物台上并进行扫描,进而得到特定方向的线性子图像,随后移动载物台获取另一方向的线性子图像,从而得到三维原始高光谱图像。这样就记录了图像的多个波带。
2.图像预处理
原始高光谱图像记录的数据是光子强度信息,需要进行反射校正才可获取相对反射率。还需要对感兴趣区进行选择,随之进行图像的分割,进而对目标区进行隔离和定位;最后再进行光谱数据的提取。然而从样品高光谱图像的目标区的所有像素反射率的值中,只能获得一个平均频谱,因此,需重复相同的程序,得到所有测试样品的高光谱图像的光谱,将所得到的每个样品的频谱进行整合,得到一个光谱矩阵。此外,还可以通过合并、裁剪等方法对数据量极大地高光谱图像进行处理以减少无用信息的影响进而提高处理效率。
3.光谱分析
光谱分析的核心就是特征模型的建立。在光谱维,首先利用主成分分析、偏最小二乘回归等方法对全波段进行预测,之后利用偏最小二乘回归模型产生的回归系数进行特征波段的选择。在图像维,可采用数字图像处理的技术对所得图像进行有效的分割与处理从而获取目标,提取特征参数建立相关的模型,选取回归系数绝对值的最高值所对应的波段为特征波段,随后在特征波段中对模型进行预测,即利用选择的特征波段来建立多元线性回归模型,最后,再利用回归系数、交叉验证的均方根误差等参数对模型进行评估。
4.图像分析
高光谱图像中的每个像素都有自己的光谱,在每个样本的像素中,可以通过计算出化学成分的浓度等参量来生成预测图。由于精确测量每个像素是极其困难,因此可以借助回归模型来实现。最终建立组分含量分布图像或分类图像,展示隐藏的信息,进而对样品进行分析检测。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..