高光谱图像数据怎么降噪与提取?
发布时间:2024-03-15
浏览次数:384
高光谱图像是三维数据块,每个波段都有一个灰度图像,因此高光谱图像可以看作是多个灰度图像的叠加。高光谱图像的处理方法首先就是降低噪音以及减少数据的维数,然后再采用相应的分析方法进行数据的压缩和提取。本文对高光谱图像数据的降噪与提取方法做了介绍。
高光谱图像是三维数据块,每个波段都有一个灰度图像,因此高光谱图像可以看作是多个灰度图像的叠加。高光谱图像的处理方法首先就是降低噪音以及减少数据的维数,然后再采用相应的分析方法进行数据的压缩和提取。本文对高光谱图像数据的降噪与提取方法做了介绍。
高光谱图像数据的降噪方法:
作为高光谱图像的预处理方法,最小噪声分离变换主要用于判定图像数据内在的维数,分离信号和噪声,进一步去除噪声,提高信噪比。该算法的实质是两次层叠的主成分变换。
第一次是正向变换,基于噪声的协方差矩阵,对高光谱图像进行去相关和重定标处理,分离并重新调节数据中的噪声,使得噪声成分具有单一方差,且没有波段与波段之间的相关性。经过正向变换的运行,数据空间被分为两个部分:一部分与较大的特征值以及相对应的特征图像相关联,另一部分与较小的特征值以及噪声占主导的图像相关联。依据特征值的大小和对应的图像,可以判定包含相关图像的波段(一般是前几个或十几个图像)。
第二次变换是反向变换,对经上述处理后的相关图像波谱子集做标准主成分变换,变换为它们的原始数据空间。由于以噪声为主导的图像在运行反向变换之前被排除,原始数据空间中的噪声将会大大减少。
高光谱图像数据的提取方法:
主成分分析(PCA)是一种非常实用的降低数据维数、增强有用信息以及隔离噪声信号的算法。它采用线性变换将数据转换到一个新的坐标系统,得到的新变量是原始变量的线性组合,且彼此之间互不相关,使数据的差异达到最大,同时前几个新变量要尽可能多地表达原始变量的数据特征。
对高光谱图像进行主成分分析后,得到的主成分波段图像是原始波段图像的线性组合,且每个主成分图像之间互不相关。第一主成分图像包含最大的数据方差百分比;第二主成分图像其次;主成分图像的波段越靠后,其包含的方差百分比越小,噪声信号越大,图像质量越差;最后几个波段的主成分图像包含的方差百分比很小,显示为噪声。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..