高光谱成像仪在牛肉分类中的应用
发布时间:2024-02-23
浏览次数:505
牛肉含有丰富的蛋白质,氨基酸组成比猪肉更接近人体需要,能提高机体抗病能力。但是在运输过程中,市场上的冷冻肉和新鲜肉掺杂在一起,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。本文进行了简单介绍。
牛肉含有丰富的蛋白质,氨基酸组成比猪肉更接近人体需要,能提高机体抗病能力。但是在运输过程中,市场上的冷冻肉和新鲜肉掺杂在一起,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。本文进行了简单介绍。
研究进展
由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高光谱图像数据立方体,可以构建区分新鲜肉类和非新鲜肉类的预测模型,这可以成为肉类储存状态常规分析的快速、非侵入性方法。
安装在暗室中的高光谱数据采集系统的配置示意图
基于此,来自首尔大学的研究人员使用Resonon Pika L 高光谱成像仪,在近红外光谱的400-1000 nm波段内获取高光谱图像数据立方体,进行了相关研究。在本研究中,图像采集系统安装在暗室中,以确保完全消除外部光并能够采集高光谱图像。
将九个样本同时放置在哑光黑色板上,通过移动相机获取高光谱图像数据立方体。所有样品均经过光学稳定处理,在采集高光谱数据之前将它们置于实验环境中 20 分钟,消除由肌红蛋白/氧肌红蛋白含量差异引起的巧合差异。随后,通过分离红色肉部分,从高光谱数据立方体中提取了(ROI)的光谱,确保了只有红色部分肉的光谱被提取用于分析。这个过程产生了高质量的数据集,适用于后续的分析和解释。使用四种预处理技术(MSC、SNV转换、一阶Savitzky–Golay滤波和最小-最大归一化)对提取的光谱进行模型开发。
本研究获取的高光谱数据立方体中的光谱图像。(a–c) 分别为“新鲜”、“受损”和“冷冻”样品的 630–650 nm 平均图像;(d-f)分别为“新鲜”、“受损”和“冷冻”样品的 540-560 nm 平均图像。
用于构建肉样本分类模型的高光谱数据立方体中的光谱。(a) 实验数据的完整光谱;(b) 每个实验组的平均光谱(实线)以及加减标准差后的光谱(虚线)。
研究结论
这篇文章研究了使用NIR高光谱成像仪,对牛肉进行分类,区分其“新鲜”、“受损”和“冷冻”状态。通过将韩国产牛肉样品划分为新鲜冷藏、长期冷藏和解冻状态,共获得了九个高光谱图像数据立方体,并通过滴水损失测试定量分析了牛肉样品的状况。本研究共收集了4950个光谱图像,将其80%用作训练集,20%用作测试集。
在构建机器学习模型时,使用了四种预处理方法,包括MSC和SNV用于校正,Savitzky-Golay 1st滤波器用于平滑,Min-Max用于归一化,以及原始数据,共准备了五个数据集。采用PLS-DA和SVM技术构建模型,其中SVM模型使用了四个核函数。评估模型性能时,准确性是主要指标,同时对“新鲜”类别的F1分数进行了估计,以独立验证生鲜肉分类的性能。测试集的准确率在几乎所有模型中都超过90%,主要错误是由于未能正确区分“受损”和“冻结”类别。具有散点校正和RBF核函数的SVM模型表现最佳,其准确度达到96.57%,“新鲜”类别的F1分数为100%。研究结果表明,通过纯化高光谱图像数据立方体筛选的光谱可以构建一个预测模型,用于区分新鲜肉和非新鲜肉。这些模型在未来的实际肉类采购场所中具有可行性。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..