高光谱图像的特征及压缩技术介绍
发布时间:2024-01-25
浏览次数:437
高光谱图像可视为三维立体图像,在普通二维图像基础上又多了一个光谱信息维,它具有较高的光谱分辨率,因此数据量庞大,给高光谱图像数据的传输和存储带来了巨大的压力,因此,对它进行压缩是非常必要的。本文对高光谱图像的特征及压缩技术做了介绍。
高光谱图像可视为三维立体图像,在普通二维图像基础上又多了一个光谱信息维,它具有较高的光谱分辨率,因此数据量庞大,给高光谱图像数据的传输和存储带来了巨大的压力,因此,对它进行压缩是非常必要的。本文对高光谱图像的特征及压缩技术做了介绍。
高光谱图像的特征:
高光谱图像可视为三维立体图像,在普通二维图像基础上又多了一个光谱信息维,它具有较高的光谱分辨率,因此数据量庞大,给高光谱图像数据的传输和存储带来了巨大的压力,因此,对它进行压缩是非常必要的。为了有针对性的对高光谱图像进行处理和压缩,首先应分析高光谱遥感图像的特征,即分析高光谱图像的相关性。高光谱图像的相关性一般表现在两个方面:空间相关性和谱间相关性。
1.空间相关性
空间相关性是指每个谱段内某一像素与其相邻像素之间的相似性。由于遥感图像从高空拍摄获得,涉及目标大,图像的空间分辨率一般为米一几十米量级,如果空间分辨率较低,地面目标只占一个或几个像素,像素值的连续性较差,因此空间相关性较低。
2.谱间相关性
谱间相关一方面是由于传感器的频谱交叠,另一方面是由于对象或目标的光谱特性在光谱上具有连续性。谱间相关性又可分为谱间统计相关性和谱间结构相关性。
(1)谱间统计相关性:光谱图像的每个波段图像的像素值,是相同区域地物在各个波段的反射值,各波段图像灰度分布是相关的,其相关性的强弱在很大程度上取决于光谱分辨率。
(2)谱间结构相关性:由于不同波段的成像对象是同一地物,具有相同的物理结构,虽然同一空间位置不同波段的像素值相差很大,但与其邻域的关系却是很相似的,这就是谱间结构相关性。
在高光谱图像中,相邻两个波段的光谱图像间的相关性是非常强的。这种谱间相关性是光谱图像所特有的,因此在光谱图像处理和压缩中要充分予以重视。
高光谱图像压缩技术:
为了在尽可能保留有用信息的情况下,大幅度提高高光谱图像的压缩比,人们将ROI压缩思想应用到高光谱图像压缩中,对ROI进行无损压缩或高保真压缩,非ROI进行高压缩比压缩,实现了图像无损压缩与有损压缩的结合。
与静态图像的压缩技术相比,目前高光谱图像的压缩编码还没有一个公认的标准或已成熟的压缩方法,无论是无损压缩还是有损压缩,主要采用的压缩技术有变换压缩技术、矢量量化技术和预测编码技术等。变换/预测方法是将图像编码中传统的预测和变换技术等引入到高光谱图像的压缩中,并利用高光谱数据的空间和谱间特性设计编码器。矢量量化方法则利用了高光谱图像数据的结构,由于高光谱图像中每一像素处的数据是由多波段灰度值构成的矢量,因此能够方便地进行矢量量化。各种矢量量化方法在数据分块、码书设计等方面都有自己独特的策略。
由于高光谱图像中不仅存在空间冗余,而且存在着很强的谱间冗余,为了去除数据中的多种冗余,高光谱图像压缩方法通常要综合变换、预测、矢量量化等多种压缩手段,并且利用分类和分割等图像处理技术。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..