高光谱成像仪的原理及扫描方式介绍
发布时间:2023-11-17
浏览次数:590
高光谱成像仪作为一种光谱成像工具,它将传统二维成像技术和光谱技术有机结合在一起,既可以获取目标物的二维空间信息,又可以获得一维光谱信息。具有空间可识别性、超多波段、高的光谱分辨率、光谱范围广和图谱合一等众多优点。本文对高光谱成像仪的原理及扫描方式介绍,感兴趣的朋友可以了解一下!
高光谱成像仪作为一种光谱成像工具,它将传统二维成像技术和光谱技术有机结合在一起,既可以获取目标物的二维空间信息,又可以获得一维光谱信息。具有空间可识别性、超多波段、高的光谱分辨率、光谱范围广和图谱合一等众多优点。本文对高光谱成像仪的原理及扫描方式介绍,感兴趣的朋友可以了解一下!
高光谱成像仪的原理:
高光谱成像仪(HSI),也称为成像光谱仪,是一种将成像和光谱相结合的探测技术,它在精细农业、医学影像等领域有着广泛的应用。在高光谱图像中每个像素点都包含着连续的光谱信息,通过光谱信息的分离可得到一系列连续窄波段的光谱信息,每个窄波段的光谱信息都能组合成该波段的图像,提供样品在该光谱波段的结构信息,而将各个通道的光谱信息进行融合所得到的高光谱图像则提供不同光谱信息在样品中的分布情况。如下图所示,HSI的数据组成一般包括二维的空间信息和一维的光谱信息,二者的结合通常被称为超立方体,图中XY为二维空间信息,λ为光谱信息。
高光谱成像仪器的扫描方式:
高光谱成像技术的种类繁多,根据光谱信息的获取方式不同可分为三大类,分别是凝视式、摆扫式以及推扫式高光谱成像技术。
凝视式高光谱成像技术使用面阵探测器获取样品一个切面光谱信息,并通过替换成像系统中光学带通滤波器逐个波段获取光谱信息,由于光学带通滤波器具有一定的带宽,因此光谱分辨率较低,再者由于是逐个波段获取,所以全光谱数据采集的时间比较长。
摆扫式高光谱成像技术的基本原理是逐点获取光谱信息,在硬件上使用扫描振镜逐点激发样品,同时通过线阵探测器获取每个点的全光谱信息,这种光谱获取方式具有成像范围广和系统稳定等特点,缺点是每个点的曝光时间较短以及采集时间比较长。
推扫式高光谱成像技术通过逐线获取光谱信息,使用面阵探测器获取每一条线的光谱信息,在硬件上使用机械平移台移动样品,实现一个切面光谱信息的获取。与摆扫式相比,推扫式具有更高的成像速度,因此曝光时间更长,信噪比更高。如下图所示,为推扫式高光谱成像系统的原理图,该系统主要由光源、机械平移台、准直器、色散单元以及探测器等组成。在光源的照射下,样品发出的荧光经前置透镜聚焦通过狭缝入口,然后经准直器传递至色散单元(棱镜或者光栅等),分光后连续光谱信息由二维探测器捕获一次性捕获。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..