高光谱成像仪的高光谱图像数据处理分析方法有哪些?
发布时间:2023-10-20
浏览次数:402
高光谱成像仪作为精密的光学仪器,它融合了传统的成像和光谱技术的优点,可以同时获取被检测物体的空间信息和光谱信息,具有“图谱合一”的特点。那么,高光谱成像仪的高光谱图像数据处理分析方法有哪些?本文为大家作了介绍,对此感兴趣的朋友可以了解一下!
高光谱成像仪作为精密的光学仪器,它融合了传统的成像和光谱技术的优点,可以同时获取被检测物体的空间信息和光谱信息,具有“图谱合一”的特点。那么,高光谱成像仪的高光谱图像数据处理分析方法有哪些?本文为大家作了介绍,对此感兴趣的朋友可以了解一下!
高光谱图像处理分析方法不胜枚举,在图谱数据处理过程中,有如下基础方法。
1.高光谱图像预处理
高光谱图像因其携带大量的数据信息,增强了技术的检测能力,同时也增大了信息的冗余量,因此在预处理阶段的主要目的即对立体数据进行降维处理。在保存感兴趣特征的同时减少数据信息量,降低处理信息的时长与难度同时增强数据分析的精确度。目前,较为普遍的高光谱图像预处理方法有特征选择和特征提取两种方法。
特征选择是指从最初波段中直接选取有效的特征波段,达到降低数据维度的目的。特征提取是指通过对一个或若干个原始波段的属性关系进行组合变换,得到新的特征属性。光谱信息的冗余量与相关性取决于波段的宽窄度,因而选取最优波段是图像降维度过程的关键要素。实际检验鉴定中常通过多种降维方法交叉结合使用,来达到最佳的检验结果。如基于主成分分析、基于高阶统计量的独立元分析、最小噪声分离变换、傅里叶变换、基于核函数和基于神经网络的非线性特征分析等。
2.数据特征分析
根据检材在光谱图中的不同特性信息反映,选取不同分类模型对不同类别的待测目标进行分类。使用计算机分析处理作为辅助方法,弥补鉴定人员的视觉鉴别传统方法的不足,如最大似然比分类、卷积神经网络分类方法等等。作为机器学习方法之一的监督学习,通过对已知标签的特征进行提取学习,构造训练函数完成对未知样本的分类检验任务,如K近邻法、马氏距离分类、最大似然法、最小距离法、光谱角分类法等等。另一种非监督分类则是直接对光谱信息进行特征提取,统计差别进行分类,如K-均值、ISODATA(迭代自组织数据分析)等。对高光谱图进行数据分析的过程中,通过总体分类精度对分类方法进行评价,选择最有效的分类方法而获得最佳结果。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..