高光谱成像技术的基本原理及成像系统的构成
发布时间:2023-08-18
浏览次数:467
高光谱成像技术作为一种新型的光电探测技术,它即可以利用多个光谱通道获取被测样品在不同波长上的形貌和空间信息,又能获得反映图像各处成分的光谱信息,具有强大的数据获取能力和分析检测检测潜质,因此已在农牧业生产、生物医药、环境监测等诸多领域有了广泛应用。
高光谱成像技术作为一种新型的光电探测技术,它即可以利用多个光谱通道获取被测样品在不同波长上的形貌和空间信息,又能获得反映图像各处成分的光谱信息,具有强大的数据获取能力和分析检测检测潜质,因此已在农牧业生产、生物医药、环境监测等诸多领域有了广泛应用。
高光谱成像技术的基本原理:
高光谱成像是一种在测得连续光谱的同时又获得样品空间位置的成像技术,兼具了光谱分析和图像处理的特点。光谱分析是检测物质内在成分的常用手段,当样品与电磁辐射相互作用时,其反射或透射的电磁波若按波长大小排列就可形成光谱。而不同物质其内部原子、分子的组成结构或排序不同会形成独特的能带结构,这样形成的光谱参数和不同波长处的关键峰值都有独特的特征,这些特征就成了表征不同物质属性的特征光谱(光谱指纹),因此通过记录特征光谱的形态和强度就可分辨样品的化学组成和物理结构。
光谱成像则是在获取光谱信息的基础上,通过成像设备获取样品各个波段的图像数据,这种图谱合一的三维数据称为数据立方体,如上图所示图。其中(x,y)代表两维的空间维度,而入为对应波长,代表一维的光谱维度。从图中可以看到,从每一个很窄的波段看过去,数据是一幅二维图像,而针对平面内某个特定像素沿波段展开分析,则是一条光谱曲线。
光谱成像根据光谱分辨率可分为多光谱、高光谱和超光谱。多光谱图像的波段只有几个或几十个,多数只适用于特定的应用,而能超过一百个波段的习惯上就称为高光谱图像。由于波段数目多,每个波段都很窄,所以高光谱图像比多光谱具有更高的光谱分辨率,通常可达2~3nm,其适用的场合更广泛。但是,随之而来的是数据处理量更大,设备成本也更高,因此应针对研究的对象、目的和工作环境,采用适宜的技术手段。
高光谱成像技术的系统构成:
典型的高光谱成像系统由光源、成像光谱仪、CCD相机以及计算机等辅助系统构成,如下图所示。
光源的波谱范围可以在紫外(200~400nm)、可见光(400~760nm)、近红外(760~2560nm)以及波长大于2560nm的区域根据需要进行选择设置。
成像光谱仪主要由准直入射、分光、成像等功能器件组成,较为常见的基于线扫描成像的光谱仪会记录样品表面一条线状的信息,将扫描线沿垂直方向平移就可完成整个样品表面的检测。
探测器元件是记录光谱图像信息的关键传感器,以电荷耦合器件(Charge Coupled Device,CCD)探测器为代表的光电传感器可将光谱的辐射强度信号转换为相应的电信号,其作用就像胶片一样,但它是将光学影像转换成数字信号,其性能决定了成像的质量。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..