高光谱成像技术的原理你了解吗?
发布时间:2023-07-07
浏览次数:572
高光谱成像技术结合了传统计算机视觉与光谱分析技术的特点,将传统二维成像技术和光谱技术有机结合,可以同时获取样品的详细光谱信息和图像信息。被广泛的应用于工业分选、精准农业、色差检测、食品检测、医学制药、文物保护、刑侦检测、环境监测等领域。本文对高光谱成像技术的原理做了介绍。
高光谱成像技术结合了传统计算机视觉与光谱分析技术的特点,将传统二维成像技术和光谱技术有机结合,可以同时获取样品的详细光谱信息和图像信息。被广泛的应用于工业分选、精准农业、色差检测、食品检测、医学制药、文物保护、刑侦检测、环境监测等领域。本文对高光谱成像技术的原理做了介绍。
高光谱成像技术介绍:
高光谱成像技术最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。
高光谱成像技术的定义是在多光谱成像的基础上,在紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。按照光谱顺序在不同的光谱波长点都有一张二维空间图像,即整个高光谱图像其实是一个数据“立方体”。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。某些物体在光谱中留下独特的“指纹”。这些“指纹”被称为光谱特征,可用于识别被扫描物体的物质组成。
高光谱成像技术的原理:
高光谱成像是一系列波长范围内的图像,根据不同的光源,光谱范围可分为200~400nm(紫外)、400~760 nm(可见光)、760~2560 nm(近红外)以及波长大于2560nm的区域。高光谱成像系统的主要组成部分有:CCD相机、单色仪、成像镜头、光源、载物台和计算机,如下图所示。
在扫描过程中,摄像头接受从物体表面反射或透射来的光,通过CCD探测器把光信号转换成电信号,图像采集卡把CCD得到的模拟信号转换成数字信号,通过计算机显示出来,单色仪用来获得特定波长的光,单色仪分为滤波片(滤波器)和图像光谱仪两种,根据单色仪的不同可把高光谱系统分为两种不同的高光谱系统,第1种是基于滤波片(滤波器)的高光谱成像系统,其通过连续采集一系列波段条件下样品的二维图像,即在每个特定波长λi(i=1,2,3,…,n;n为正整数)得到一幅二维图像(横坐标为x,纵坐标为y),从而得到三维高光谱图像块,如下图所示。
第2种是基于成像光谱仪的高光谱成像系统,其采用“扫帚式”成像方法得到高光谱图像;线列或面阵探测器在光学焦面的垂直方向做横向排列完成横向扫描(x轴向),获取对象条状空间中每个像素在各个波长λi(i= 1,2,3,…,n;n为正整数)下的图像信息;同时在检测系统输送带前进过程中,排列的探测器如同刷子扫地一样扫出一条带状轨迹从而完成纵向扫描(y轴向),综合横纵扫描信息就可得到样品的三维高光谱图像数据,如下图所示。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..