显微高光谱成像系统(五)——性能测试和结果
发布时间:2023-05-26
浏览次数:430
显微高光谱成像系统由 由显微镜、分光计、相机、数据采集和控制系统几部分组成。那么,这种系统好用吗?本文根据一个性能测试和结果进行说明。
显微高光谱成像系统由 由显微镜、分光计、相机、数据采集和控制系统几部分组成。那么,这种系统好用吗?本文根据一个性能测试和结果进行说明。
在完成系统集成后,首先对系统进行光谱定标。光谱定标的方法是在显微镜聚光镜下方放置一反射镜,利用一台高精度单色仪,通过平行光管照亮反射镜,读出光谱仪的帧数据,得到各波长在CCD 像面对应的位置,即可确定各个波段对应的中心波长。同时选取若干个波段,利用单色仪测量这些波段的光谱带宽。
表1是其中若干波段的定标结果,由于 CCD 相机光谱维共有244个像素,为减小数据记录压力,在数据采集时只是隔行记录120个波段。从光谱定标结果来看,系统的光谱分辨率在3nm 左右。并且可以看出从第110波段以后,波长大于 800 nm,考虑到二级光谱重叠,因此从第110个波段以后的数据不作分析。
其次是测量系统的光谱畸变,方法是利用汞灯照射反射镜,记录汞灯辐射中各个光谱线在CCD 像面的位置,即可测得像面边沿处的光谱畸变。结果发现在405 nm 波长处,边沿的光谱弯曲将近一个半像素,而在546 nm 波长处,边沿的光谱弯曲一个像素,因此,最边沿像素的光谱误差在2~3nm.
在对系统的性能进行测试后,利用该实验系统对人体正常血细胞进行实验观测,实验样品的制备是将正常的人体血样滴在载玻片上,未进行其它处理。实验时使用的是40倍显微物镜。
图2是从记录的图像立方体中截取的一段单波段灰度图像,其中心波长为 601.6nm,波段带宽约3nm.
图3是从图像中选取任意象素位置的光谱曲线。
上一页 : 高光谱成像仪的光谱图像数据如何处理与分析?
下一页 : 高光谱相机应用优势
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..