高光谱成像仪的成像原理及高光谱图像数据处理方法介绍
发布时间:2023-04-21
浏览次数:546
高光谱成像仪结合光谱技术和图像技术的优势,能够很好的捕获光谱信息和图像信息。其丰富的光谱信息能够有效的提取样品内部特征,被广泛的应用于果蔬无损检测等领域。本文对高光谱成像仪的成像原理及高光谱图像数据处理方法做了简要的介绍,感兴趣的朋友可以了解一下!
高光谱成像仪结合光谱技术和图像技术的优势,能够很好的捕获光谱信息和图像信息。其丰富的光谱信息能够有效的提取样品内部特征,被广泛的应用于果蔬无损检测等领域。本文对高光谱成像仪的成像原理及高光谱图像数据处理方法做了简要的介绍,感兴趣的朋友可以了解一下!
高光谱成像仪系统的主要构成:
高光谱成像系统由硬件和软件两部分组成,如下图所示硬件最重要的部件是传感器,还包括光源、扫描器和控制装置等。传感器主要由物镜、光谱仪和CCD阵列探测器。光谱仪主要有两种:干涉型成像光谱仪和光栅型成像光谱仪。CCD阵列探测器分为线阵探测器和面阵探测器。软件部分主要包括光谱预处理软件和数据采集及处理软件等。
高光谱成像仪的成像原理:
下图所示为高光谱成像原理示意图。高光谱成像系统最重要的组成是光谱仪,光谱仪有一个棱镜-光栅-棱镜单元,此单元可以阻止环境光的干扰,而且在光谱仪获得被测物体的一行图像时,此单元可以将光线从每行图像的像素点色散到光谱轴上,这样就获得了在空间轴和光谱轴上的一维影像和光谱信息。由于物体或物镜的连续运动,就形成了整个物体的光谱图像。最终在CCD阵列探测器上完成对每个瞬间信号的获取,得到高光谱三维图像数据块。
高光谱图像数据处理方法:
高光谱图像数据信息量丰富,但数据处理非常复杂。综合国内外高光谱图像数据处理方法主要是:先选择感兴趣区域,然后可以采用主成分分析法、独立元分析、连续投影算法、线性判别分析、Fisher判别方法、典型分析以及遗传算法等对感兴趣区域数据进行降维处理,提取特征波长,并建立相应的判别模型,常用的建模方法有BP神经网络、支持向量机、多元线性回归法、偏最小二乘法等。相关文献表明:支持向量机在建模分析时,结果较好,因为支持向量机不会因波段数量增加,分类精度下降,即出现所谓的Hughes现象。RBF神经网络分类效果明显高于BP神经网络分类法。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..