高光谱成像仪的工作原理和应用范围
发布时间:2023-04-14
浏览次数:535
高光谱成像仪从20世纪80年代开始在多光谱遥感成像技术的基础上发展。它以高光谱分辨率获取高光谱图像,可用于精确分类地物、识别地物、提取地物特征信息。本文主要介绍了高光谱成像仪的工作原理和应用范围。
高光谱成像仪从20世纪80年代开始在多光谱遥感成像技术的基础上发展。它以高光谱分辨率获取高光谱图像,可用于精确分类地物、识别地物、提取地物特征信息。本文主要介绍了高光谱成像仪的工作原理和应用范围。
高光谱成像仪的工作原理
高光谱遥感信息处理和定量分析模型建立目标后,可以提高高光谱数据处理的自动化和智能化水平。由于高光谱成像仪高光谱分辨率的巨大优势,它已成为当代空间地面观测的主要技术手段,在空间地面观测的同时,获得了许多连续波段的地面物体光谱图像,从而达到了从空间中直接识别地球表面物质的目的。在科学研究、工农林业环境保护等方面取得了巨大成就。
地面物体的反射光通过物理镜在狭缝平面上成像,狭缝被用作光栏,以使穿过轨道方向的地面物体的图像通过,并阻挡其他部分的光。地面目标的辐射可以通过方向镜收集,并通过狭缝增强直接照射到色散元件,通过色散元件在垂直带方向根据光谱分散,传感器中使用的二维CCD表面阵列检测元件聚集成像分布在光谱仪的焦平面上。焦平面的水平方向在狭缝中平行,称为空间维度。每一行水平光敏感元是地面条带的光谱波段图像;焦炭平面的垂直方向是色散方向,称为光谱维度。每列光敏感元是地面条带、空间采样场(像元)光谱色散图像。通过这种方式,表面阵列检测器的每个图像数据是轨道方向上的地面条带的光谱数据,以及航天器的运动,以一定的速度连续记录光谱图像,获得地面图像和图像立方体的二维图像。
高光谱成像仪的应用范围
高光谱成像仪在化学、物理、生物、医学等多个领域的应用范围内,对于纯定性到高定量的化学分析和分子结构的测定具有很大的应用价值。例如,在生物化学研究中,可以使用喇曼光谱来识别某些物质的类型,也可以测量分子的振动和旋转频率,定量理解分子之间的力和分子内部力,并推断分子的对称性、几何形状、分子中原子的排列、热力学功能的计算、振动旋转拉曼光谱和旋转拉曼光谱的研究,可以获得相关分子常数的数据。对于非极性分子,由于它们不吸收或发射旋转和振动光谱,振动旋转能量和对称性以及其他许多信息反映在散射光谱中。对于极性分子,许多分子参数可以通过红外光谱获得,但为了获得更完整的数据,红外光谱和拉曼光谱通常同时被观察,它们有不同的选择,可以提供相互补充的数据。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..