基于高光谱成像技术的高光谱图像数据降维方法
发布时间:2024-11-01
浏览次数:82
高光谱数据是一个三维数据块,这个三维数据块包含很多的光谱信息,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在进行预测模型之前,需要对光谱图像数据进行降维处理。本文对高光谱图像数据降维方法做了介绍。
高光谱数据是一个三维数据块,这个三维数据块包含很多的光谱信息,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在进行预测模型之前,需要对光谱图像数据进行降维处理。本文对高光谱图像数据降维方法做了介绍。
高光谱数据是一个三维数据块,不仅可以提取每个像元的光谱信息,而且每个波长都对应一幅灰度图像。但是,对于分辨率较高的高光谱数据,每个数据块就包含上百幅图像信息,数据量过大,会降低后期的数据处理速度,并且波段较多,光谱信息之间相关性很强,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在数据处理过程中,高光谱数据的降维是减小噪声,提高模型识别速率和识别准确率的有效手段。
1.主成分分析(PCA)
主成分分析(PCA)是被较多应用的一种数据降维方法。PCA变换是将有相关性的原始变量沿协方差最大的方向投影,使经过坐标变换的高维空间数据映射到低维空间,得到线性不相关的新变量,即主成分。主成分按照方差从大到小的顺序依次称为第一主成分(PC1)、第二主成分(PC2),以此类推。原始高光谱数据经过PCA变换,可以看作各个主成分图像的线性组合,主成分图像所占原始图像信息的比重由方差贡献率决定。一般,当主成分的累计贡献率达到一定比例,如85%以上,即可解释大部分高光谱数据信息。因此,经过PCA变换的高光谱数据仅需少量主成分就可以极大程度上表征原始信息,大大减少了数据处理时间,并消除原始数据之间冗余的信息。
2.最小噪声分离变换(MNF)
对于高光谱数据降维,最小噪声分离变换(MNF变换)的主要目的在于分离高光谱数据的信号和噪声,提高信噪比。该算法可以看作是两次主成分变换的叠加。首先,基于图像噪声的协方差矩阵进行正向变换,然后,对多维图像去相关、重定标。变换之后的数据关联到两个部分:一个部分是较大特征值,及其特征图像;另一个部分则是较小特征值,及其噪声图像。特征值的大小决定特征图像的信噪比高低,用来确定有效的特征图像。最后,正向变换后确定的图像子集被作标准主成分变换,恢复为对应的原始图像。MNF将噪声比例大的图像排除,使有效的高光谱数据量大幅度上涨。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..