高光谱成像仪高光谱数据的处理方法介绍
发布时间:2024-10-18
浏览次数:131
高光谱成像仪在测定样品时,不仅可以获得光谱信息,还可以获得图像信息。不过,高光谱成像仪的高光谱数据比较的冗沉,因此就需要对高光谱数据进行处理。本文对高光谱成像仪高光谱数据的处理方法做了介绍。
高光谱成像仪在测定样品时,不仅可以获得光谱信息,还可以获得图像信息。不过,高光谱成像仪的高光谱数据比较的冗沉,因此就需要对高光谱数据进行处理。本文对高光谱成像仪高光谱数据的处理方法做了介绍。
通过成像光谱仪采集获得的高光谱图像,首先要进行黑白校正(白板校正和暗场校正),即反射率的归一化处理。然后,选取感兴趣区域,提取感兴趣区域内所有点的反射率光谱并取平均值。提取所有样品的平均光谱,得到光谱数据矩阵。
其中每一个像素点都对应着一条完整的光谱曲线,每一条光谱曲线同样对应着一副二维的几何图像。实验中,样品数量高达上千个,又有上百个波段,这往往导致光谱数据矩阵非常庞大。因此,如何有效地挖掘庞大数据结构的有效信息成为光谱分析技术需要解决的首要问题。通常,数据分析分为以下几个步骤:
(1)光谱预处理
预处理可以有效减少系统噪音、杂散光等对成像的影响,从而获取信噪比高、背景干扰较低的数据。常用的光谱预处理方法有:平滑、归一化、多元散射校正、求导、变量标准化等。
(2)提取特征波长
光谱数据的高维及共线性问题往往降低模型的运算效率和精度。选取有效的特征波长不仅降低了维数问题,而且最大程度上包含样品的原始信息,进而达到简化运算的目的。常用的提取特征波长的方法有:回归系数法、连续投影算法、载荷系数法、遗传算法、竞争性自适应重加权算法等。
(3)回归或分类模型的建立
用提取的特征波长和待测参数建立回归或分类模型。常用的建模方法有:主成分分析、多元线性回归、主成分回归、人工神经网络、偏最小二乘法、最小二乘支持向量机等。
另外,以上所述的步骤仅仅是针对光谱的处理,而高光谱图像还可以看作是每个波段图像的叠加,这些图像包含样本丰富的空间分布属性。图像纹理反映像素的空间位置和亮度值变化,进而反映样本几何结构的变化。因此,通过提取高光谱图像的纹理变量信息(包括对比度、方差、熵等)同样可以建立相应的预测模型。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..