高光谱影像的鲜桃可溶性固形物含量预测
发布时间:2023-11-10
浏览次数:576
鲜桃是一种营养丰富和风味甜香的水果,可溶性固形物含量(SSC)作为影响鲜桃风味的重要 成分,也成为衡量鲜桃品质的重要参考标准,因此,精准估测SSC对于鲜桃分级和评价具有重要的研究意义和应用价值。目前,随着传感器和数据分析技术的快速发展,无损估测水果可溶性固形物含量被广泛研究及应用。
鲜桃是一种营养丰富和风味甜香的水果,可溶性固形物含量(SSC)作为影响鲜桃风味的重要 成分,也成为衡量鲜桃品质的重要参考标准,因此,精准估测SSC对于鲜桃分级和评价具有重要的研究意义和应用价值。目前,随着传感器和数据分析技术的快速发展,无损估测水果可溶性固形物含量被广泛研究及应用。其中,近红外光谱、多光谱、荧光谱、电子鼻等已经成功地检测鲜果SSC。
然而,目前大部分研究基于单一特征检测,从而限制了水果SSC预测模型的进一步探究。近年来,高光谱影像不仅提供光谱维信息,还提供空间维信息,常常被广泛用来检测水果的SSC。结果表明,基于高光谱影像特征估测SSC的可行性。然而,大部分研究仅基于光谱维信息,容易导致SSC估测模型过拟合。随着深度学习在不同领域的应用,为鲜桃SSC预测提供 了新思路和新方案。堆叠自动编码器(SAE)作为深度学习方法,具有较强的特征能力,从而提高预测模型的精确性。因此,在这项研究中设计不同结构的堆叠自动编码器,分别提取高光谱影像的光谱维、空间维信息深层特征,为鲜桃SSC的定量分析提供技术路径。
通过不同品种鲜桃样本的SSC可视化,表 明 SAE-PSO-SVR模型具有较好的普适性。基于SAE提取鲜桃高光谱影像的光谱信息和空间信息深层特征,进一步通过融合信息的深层特征构建了基于SAE-PSO-SVR的鲜桃SSC估测模型,有效的提高了模型的估测精度。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..