解析高光谱图像特征提取方法
发布时间:2023-08-04
浏览次数:627
高光谱遥感技术具有能同时反映遥感对象空间特征和光谱特征等优势,但这些优势也带来了波段众多且相关性强、数据冗余度高、不利于进一步处理与利用等问题。
高光谱遥感技术具有能同时反映遥感对象空间特征和光谱特征等优势,但这些优势也带来了波段众多且相关性强、数据冗余度高、不利于进一步处理与利用等问题。通过降维可以减少数据中的冗余信息,提高处理效率,而特征提取作为降维的一种重要方法,具有降维速度快等优点。因此,特征提取对高光谱图像的利用有重要意义。
高光谱图像降维基本原理
高光谱图像降维方法可分为基于特征提取的方法和基于特征选择的方法两类。高光谱图像特征选择又称波段选择,波段选择的定义是从一组数量为K的原始特征中,按照令准则函数J(X)最大的原则,选择出数量为k(k
高光谱图像特征提取,即将原始高光谱数据从高维光谱特征空间按照某一变换方式,投影到一个维数更低的子空间。特征提取过程如图3所示,其中F(X1,…,X5)表示一个线性或者非线性的变换方程。
波段选择受搜索算法和准则函数的影响,不可避免地会损失大量信息,而特征提取方法可以经过变换直接将高维数据降维到目标维数,降维速度快。
高光谱图像特征提取研究现状
特征提取方法可分为传统机器学习方法以及深度学习方法两类,如图4所示。其中,传统机器学习方法根据特征空间映射函数的形式又可分为线性方法和非线性方法。
传统机器学习方法
线性方法
假设高维数据采样于线性结构中,并通过一个线性形式的变换实现高光谱图像特征提取。根据利用样本类别信息的情况,线性方法可进一步细分为无监督、有监督及半监督学习3种学习方法。其中,数据集中只有部分样本含有类别标签,同时使用有标记和无标记样本实现降维的算法属于半监督学习方法。因为半监督方法的相关研究较少,所以本文着重对无监督和有监督方法进行介绍。
非线性方法
虽然线性方法普遍具有理论成熟、原理简单、便于实现和使用等优点,但高光谱数据属于非线性数据,利用线性方法对高光谱图像数据进行维数约减往往无法取得满意的效果。
深度学习方法
深度学习是机器学习领域的分支之一,旨在构造一个可训练的深层模型仿效人脑分析和处理问题的过程。高光谱图像多种多样,一种特征提取方法很难在所有类型的数据中均取得良好的效果,这是传统机器学习方法普遍存在的问题。深度学习方法很好地解决了这个问题,针对不同类型的数据学习特征,深度学习模型可以根据不同的数据自主地学习特征。
高光谱图像特征提取存在的问题与研究方向
高光谱图像特征提取技术作为一种预处理技术,减少了数据中的冗余信息,提高了目标检测、分类等后续应用的效果,极大地促进了高光谱遥感技术的发展。但目前的特征提取技术及算法还存在很多局限性,主要表现在以下几个方面。
1)有些高光谱特征提取算法时间复杂度过高、运算时间过长,即使精度有一定提高也得不偿失,不适于某些对算法实时性要求很高的场合。
2)许多高光谱特征提取算法都含有参数,对于算法的使用者而言,调参是一个耗时费力的过程,且参数的取值对算法的效果有显著影响,所以最佳参数的选择是一个难以解决的问题。
3)高光谱图像提供了丰富的空间、光谱信息,但目前绝大多数特征提取算法都只利用了高光谱图像的光谱信息,如何高效地综合利用高光谱图像的空间、光谱信息是有待进一步深入研究的问题。
研究方向
针对高光谱图像特征提取方法的研究现状及存在的问题,提出了一些解决问题的思路及有价值的研究方向。
1)利用Spark或CUDA并行编程框架实现诸如流形学习等时间复杂度较高算法的并行化,可以有效缩短算法的运行时间。
2)完善特征提取算法的理论体系,为解决目前存在的问题提供理论依据,例如为核方法中核函数以及核参数的选择提供理论依据。
3)在对高光谱图像数据进行特征提取之前对高光谱图像进行空间滤波,从而综合利用高光谱图像的空间信息及光谱信息。
4)在实际应用中,对高光谱图像数据进行标记的成本较高且有些数据无法进行标记,所以无监督或半监督特征提取算法是后续研究的重点。5)深度学习作为目前机器学习领域热门的研究方向,具有许多传统机器学习方法所不具备的优势,基于深度学习的高光谱特征提取方法是一个研究方向。
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..