便携式高光谱成像仪对桃子品质和成熟度无损预测研究
发布时间:2023-03-29
浏览次数:425
便携式高光谱成像仪对桃子品质和成熟度无损预测研究
基于便携式高光谱成像仪的田间桃子品质和成熟度无损预测研究
桃子因其良好的品质和丰富的营养而广受消费者喜爱,但桃子作为一种呼吸性气候的水果,其水分含量很高,容易变色、变软后变质。在日常的生产中,成熟的桃子通常采摘下来后就立即食用,而中熟的桃子被采摘下来后需要经过运输或储存很长一段时间才能上市。在此期间,桃子的质量属性(诸如可溶性固溶物含量和硬度等)会不断地快速变化,因此本文通过高光谱相机采集高光谱图像,并结合化学计量学来确定桃子的内部质量和判别不同成熟度阶段的桃子。
图1果园现场高光谱图像采集和光谱处理
表1 桃子可溶性固溶物含量和硬度含量分布及数据集划分
图1为现场图像采集照片和对高光谱图像中的光谱进行提取和处理。文章采用SPXY法将160个样品划分为100个校正集和60个预测集,集合划分结果和指标如表1所示,图2为中熟和成熟的桃子的平均光谱反射率与标准偏差的示意图。
图2 中熟和成熟的桃子的平均光谱反射率与标准偏差
文章采用CARS算法和随机跳蛙(RF)算法提取有效波长,并基于特征波长建立可溶性固溶物含量(SSC)和硬度的多元线性回归(MLR)模型,建模效果如图3所示。其中SSC的RF-MLR预测模型较好,Rv2为0.88,RMSEV为0.54,硬度的CARS-MLR预测模型较好,Rv2为0.81,RMSEV为1.17。
图3 SSC(a)和硬度(b)实测值与预测值散点图
图4 SFS算法提取的两个波长
在此基础上,文章采用顺序前向选择(SFS)算法提取两个有效波长(957nm,518nm),如图4所示。随后使用LIBSVM模型对桃子的成熟度进行辨别,如图5所示,图5a为模型选取的最佳核参数C=5.7和γ=16,图5b为模型分类识别的准确率,分类识别精度达到91.7%。
图5 LIBSVM模型对桃子成熟期的判别
上一页 : 没有了
下一页 : 高光谱技术带你揭秘枫叶变色过程
本文标签:
便携式高光谱成像仪对桃子品质和成熟度无损预测研究
相关产品
-
荧光光谱分析测试或分析方法原理
荧光光谱技术是一种通过测量物质吸收光后发射的荧光光谱来研究物质性质的技术。本文根据《JY-T 0571-2020》,简单总结了荧光光谱分析测试或分析方法原理。..
-
红外光谱的定性分析和定量分析
红外光谱分析方法通则中,规定了用红外光谱仪定性定量分析有机物及无机物的通用规则,适用于波数范围为7 800cm\'~350cm「(波长1.28 gm~28.57..
-
全球高光谱成像系统(HSI)市场发展情况
高光谱成像系统(High Spectral Imaging,HSI),是一种能够获取并处理从紫外到红外波段范围内多个连续窄波段图像的技术,广泛应用于农业、医疗健..
-
全球首款百通道百万像素高光谱实时成像器件问世
中国工程院院士、北京理工大学教授张军团队首创片上光谱复用感知架构,自主研制了全球首款百通道百万像素高光谱实时成像器件,光能利用率创造世界纪录。..